Geosys

Geosys is the main client class to access all the Geosys APIs capabilities.

client = Geosys(api_client_id, api_client_secret, api_username, api_password, env, region)

Parameters:
  • enum_env (Env, default: PROD ) –

    'Env.PROD' or 'Env.PREPROD'

  • enum_region (Region, default: NA ) –

    'Region.NA'

  • priority_queue (str, default: 'realtime' ) –

    'realtime' or 'bulk'

Source code in geosyspy/geosys.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
class Geosys:
    """Geosys is the main client class to access all the Geosys APIs capabilities.

    `client = Geosys(api_client_id, api_client_secret, api_username, api_password, env, region)`

    Parameters:
        enum_env: 'Env.PROD' or 'Env.PREPROD'
        enum_region: 'Region.NA'
        priority_queue: 'realtime' or 'bulk'
    """

    def __init__(self,
                 client_id: str = None,
                 client_secret: str = None,
                 username: str = None,
                 password: str = None,
                 enum_env: Env = Env.PROD,
                 enum_region: Region = Region.NA,
                 priority_queue: str = "realtime",
                 bearer_token: str = None
                 ):
        self.logger = logging.getLogger(__name__)
        self.region: str = enum_region.value
        self.env: str = enum_env.value
        self.base_url: str = GEOSYS_API_URLS[enum_region.value][enum_env.value]
        self.gis_url: str = GIS_API_URLS[enum_region.value][enum_env.value]
        self.priority_queue: str = priority_queue
        self.http_client: HttpClient = HttpClient(client_id, client_secret, username, password, enum_env.value,
                                                  enum_region.value, bearer_token)
        self.__master_data_management_service = MasterDataManagementService(self.base_url, self.http_client)
        self.__analytics_fabric_service = AnalyticsFabricService(self.base_url, self.http_client)
        self.__analytics_processor_service = AnalyticsProcessorService(self.base_url, self.http_client)
        self.__agriquest_service = AgriquestService(self.base_url, self.http_client)
        self.__weather_service = WeatherService(self.base_url, self.http_client)
        self.__gis_service = GisService(self.gis_url, self.http_client)
        self.__vts_service = VegetationTimeSeriesService(self.base_url, self.http_client)
        self.__map_product_service = MapProductService(self.base_url, self.http_client, self.priority_queue)

    def get_time_series(self, polygon: str,
                        start_date: datetime,
                        end_date: datetime,
                        collection: enumerate,
                        indicators: [str]) -> pd.DataFrame:
        """Retrieve a time series of the indicator for the aggregated polygon on the collection targeted.

        Args:
            polygon : The polygon
            start_date : The start date of the time series
            end_date : The end date of the time series
            collection : The collection targeted
            indicators : The indicators to retrieve on the collection

        Returns:
            (dataframe): A pandas dataframe for the time series

        Raises:
            ValueError: The collection doesn't exist
        """
        if collection in WeatherTypeCollection:
            return self.__weather_service.get_weather(
                polygon,
                start_date,
                end_date,
                collection,
                indicators,
            )
        elif collection in LR_SATELLITE_COLLECTION:
            # extract seasonfield id from geometry
            season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)
            return self.__vts_service.get_modis_time_series(
                season_field_id, start_date, end_date, indicators[0]
            )
        else:
            raise ValueError(f"{collection} collection doesn't exist")

    def get_satellite_image_time_series(self, polygon: str,
                                        start_date: datetime,
                                        end_date: datetime,
                                        collections: list[SatelliteImageryCollection],
                                        indicators: [str]
                                        ):
        """Retrieve a pixel-by-pixel time series of the indicator on the collection targeted.

        Args:
            polygon : The polygon
            start_date : The start date of the time series
            end_date : The end date of the time series
            collections : The Satellite Imagery Collection targeted
            indicators : The indicators to retrieve on the collections

        Returns:
            ('dataframe or xarray'): Either a pandas dataframe or a xarray for the time series
        """

        if not collections:
            raise ValueError(
                "The argument collections is empty. It must be a list of SatelliteImageryCollection objects"
            )
        elif all([isinstance(elem, SatelliteImageryCollection) for elem in collections]):
            # extract seasonfield id from geometry
            season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)

            if set(collections).issubset(set(LR_SATELLITE_COLLECTION)):
                return self.__vts_service.get_time_series_by_pixel(
                    season_field_id, start_date, end_date, indicators[0]
                )
            elif set(collections).issubset(set(MR_SATELLITE_COLLECTION)):
                return self.__get_images_as_dataset(
                    season_field_id, start_date, end_date, collections, indicators[0]
                )
        else:
            raise TypeError(
                f"Argument collections must be a list of SatelliteImageryCollection objects"
            )

    def get_satellite_coverage_image_references(self, polygon: str,
                                                start_date: datetime,
                                                end_date: datetime,
                                                collections: list[SatelliteImageryCollection] = [
                                                    SatelliteImageryCollection.SENTINEL_2,
                                                    SatelliteImageryCollection.LANDSAT_8]
                                                ) -> tuple:
        """Retrieves a list of images that covers a polygon on a specific date range.
        The return is a tuple: a dataframe with all the images covering the polygon, and
                    a dictionary images_references. Key= a tuple (image_date, image_sensor).
                    Value = an object image_reference, to use with the method `download_image()`

        Args:
            polygon: The polygon
            start_date: The start date of the time series
            end_date: The end date of the time series
            collections: The sensors to check the coverage on

        Returns:
            (tuple): images list and image references for downloading
        """
        # extract seasonfield id from geometry
        season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)

        df = self.__map_product_service.get_satellite_coverage(season_field_id, start_date, end_date, "", collections)
        images_references = {}
        if df is not None:
            for i, image in df.iterrows():
                images_references[
                    (image["image.date"], image["image.sensor"])
                ] = image_reference.ImageReference(
                    image["image.id"],
                    image["image.date"],
                    image["image.sensor"],
                    image["seasonField.id"],
                )

        return df, images_references

    def download_image(self, image_reference,
                       path: str = ""):
        """Downloads a satellite image locally

        Args:
            image_reference (ImageReference): An ImageReference object representing the image to download
            path (str): the path to download the image to
        """

        response_zipped_tiff = self.__map_product_service.get_zipped_tiff(
            image_reference.season_field_id, image_reference.image_id
        )
        if path == "":
            path = Path.cwd() / f"image_{image_reference.image_id}_tiff.zip"
        with open(path, "wb") as f:
            self.logger.info(f"writing to {path}")
            f.write(response_zipped_tiff.content)

    def __get_images_as_dataset(self, polygon: str,
                                start_date: datetime,
                                end_date: datetime,
                                collections: list[SatelliteImageryCollection],
                                indicator: str) -> 'np.ndarray[Any , np.dtype[np.float64]]':
        """Returns all the 'sensors_list' images covering 'polygon' between
        'start_date' and 'end_date' as a xarray dataset.

        Args:
            polygon : A string representing the polygon that the images will be covering.
            start_date : The date from which the method will start looking for images.
            end_date : The date at which the method will stop looking images.
            collections : A list of Satellite Imagery Collection.
            indicator : A string representing the indicator whose time series the user wants.

        Returns:
            The image's numpy array.

        """

        def get_coordinates_by_pixel(raster):
            """Returns the coordinates in meters in the raster's CRS
            from its pixels' grid coordinates."""

            img = raster.read()
            band1 = img[0]
            height = band1.shape[0]
            width = band1.shape[1]
            cols, rows = np.meshgrid(np.arange(width), np.arange(height))
            xs, ys = rasterio.transform.xy(raster.transform, rows, cols)
            lons = np.array(xs)
            lats = np.array(ys)
            lst_lats = [lat[0] for lat in lats]
            lst_lons = list(lons[0])
            return {"y": lst_lats, "x": lst_lons}

        # Selects the covering images in the provided date range
        # and sorts them by resolution, from the highest to the lowest.
        # Keeps only the first image if two are found on the same date.
        df_coverage = self.__map_product_service.get_satellite_coverage(
            polygon, start_date, end_date, indicator, collections
        )

        # Return empty dataset if no coverage on the polygon between start_date, end_date
        if df_coverage.empty:
            return xr.Dataset()

        df_coverage["image.date"] = pd.to_datetime(
            df_coverage["image.date"], infer_datetime_format=True
        )
        df_coverage = df_coverage.sort_values(
            by=["image.spatialResolution", "image.date"], ascending=[True, True]
        ).drop_duplicates(subset="image.date", keep="first")

        # Creates a dictionary that contains a zip archive containing the tif file
        # for each image id and some additional data (bands, sensor...)
        dict_archives = {}
        for i, row in df_coverage.iterrows():
            if indicator.upper() != "REFLECTANCE":
                bands = [indicator]
            else:
                bands = row["image.availableBands"]
            dict_archives[row["image.id"]] = {
                "byte_archive": self.__map_product_service.get_zipped_tiff(
                    row["seasonField.id"], row["image.id"], indicator
                ).content,
                "bands": bands,
                "date": row["image.date"],
                "sensor": row["image.sensor"],
            }

        # Extracts the tif files from  the zip archives in memory
        # and transforms them into a list of xarray DataArrays.
        # A list of all the raster's crs is also created in order
        # to merge this data in the final xarray Dataset later on.
        list_xarr = []
        list_crs = []
        first_img_id = df_coverage.iloc[0]["image.id"]
        for img_id, dict_data in dict_archives.items():
            with zipfile.ZipFile(io.BytesIO(dict_data["byte_archive"]), "r") as archive:
                images_in_bytes = [archive.read(file) for file in archive.namelist() if file.endswith('.tif')]
                for image in images_in_bytes:
                    with MemoryFile(image) as memfile:
                        with memfile.open() as raster:
                            dict_coords = get_coordinates_by_pixel(raster)
                            xarr = xr.DataArray(
                                raster.read(masked=True),
                                dims=["band", "y", "x"],
                                coords={
                                    "band": dict_data["bands"],
                                    "y": dict_coords["y"],
                                    "x": dict_coords["x"],
                                    "time": dict_data["date"],
                                },
                            )

                            if img_id == first_img_id:
                                len_y = len(dict_coords["y"])
                                len_x = len(dict_coords["x"])
                                print(
                                    f"The highest resolution's image grid size is {(len_x, len_y)}"
                                )
                            else:
                                self.logger.info(
                                    f"interpolating {img_id} to {first_img_id}'s grid"
                                )
                                xarr = xarr.interp(
                                    x=list_xarr[0].coords["x"].data,
                                    y=list_xarr[0].coords["y"].data,
                                    method="linear",
                                )
                            list_xarr.append(xarr)
                            list_crs.append(raster.crs.to_string())

        # Adds the img's raster's crs to the initial dataframe
        df_coverage["crs"] = list_crs

        # Concatenates all the DataArrays in list_xarr in order
        # to create one final DataArray with an additional dimension
        # 'time'. This final DataArray is then transformed into
        # a xarray Dataset containing one data variable "reflectance".

        final_xarr = xr.concat(list_xarr, "time")
        dataset = xr.Dataset(data_vars={indicator.lower(): final_xarr})

        # Adds additional metadata to the dataset.
        dataset = dataset.assign_coords(
            **{
                k: ("time", np.array(v))
                for k, v in df_coverage[
                    [
                        "image.id",
                        "image.sensor",
                        "image.soilMaterial",
                        "image.spatialResolution",
                        "image.weather",
                        "crs",
                    ]
                ]
                .to_dict(orient="list")
                .items()
            }
        )
        return dataset

    ###########################################
    #           ANALYTICS FABRIC              #
    ###########################################

    def create_schema_id(self, schema_id: str,
                         schema: dict):
        """Create a schema in Analytics Fabrics

        Args:
            schema_id: The schema id to create
            schema: Dict representing the schema {'property_name': 'property_type'}

        Returns:
            A http response object.
        """
        return self.__analytics_fabric_service.create_schema_id(schema_id=schema_id, schema=schema)

    def get_metrics(self, polygon: str,
                    schema_id: str,
                    start_date: datetime,
                    end_date: datetime):
        """Returns metrics from Analytics Fabrics in a pandas dataframe.

        Args:
            polygon : A string representing a polygon.
            start_date : A datetime object representing the start date of the date interval the user wants to filter on.
            end_date : A datetime object representing the final date of the date interval the user wants to filter on.
            schema_id : A string representing a schema existing in Analytics Fabrics

        Returns:
            df : A Pandas DataFrame containing severals columns with metrics

        """

        season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)
        season_field_unique_id: str = self.__master_data_management_service.get_season_field_unique_id(season_field_id)

        return self.__analytics_fabric_service.get_metrics(season_field_unique_id, schema_id, start_date, end_date)

    def push_metrics(self, polygon: str,
                     schema_id: str,
                     values: dict):
        """Push metrics in Analytics Fabrics

        Args:
            polygon : A string representing the polygon.
            schema_id : The schema on which to save
            values : Dict representing values to push

        Returns:
            A response object.
        """
        season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)

        return self.__analytics_fabric_service.push_metrics(season_field_id, schema_id, values)

    ###########################################
    #           MASTER DATA MANAGEMENT        #
    ###########################################

    def get_available_crops(self):
        """Build the list of available crop codes for the connected user in an enum

        Returns:
            crop_enum: an Enum containing all available crop codes of the connected user
        """
        # get crop code list
        result = self.__master_data_management_service.get_available_crops_code()

        # build an enum with all available crop codes for the connected user
        crop_enum = Enum('CropEnum',
                         {crop['code'] if not crop['code'][0].isdigit() else '_' + crop['code']: crop['code'] for crop
                          in result})

        return crop_enum

    def get_available_permissions(self):
        """Build the list of available permissions codes for the connected user in an enum

        Returns:
            permissions: a string array containing all available permissions of the connected user
        """
        # get crop code list
        result = self.__master_data_management_service.get_permission_codes()

        # build a string array with all available permission codes for the connected user
        permissions = result["permissions"]

        return permissions

    ###########################################
    #           AGRIQUEST                     #
    ###########################################
    def get_agriquest_weather_block_data(self,
                                         start_date: str,
                                         end_date: str,
                                         block_code: AgriquestBlocks,
                                         weather_type: AgriquestWeatherType
                                         ):
        """Retrieve data on all AMU of an AgriquestBlock for the specified weather indicator.

               Args:
                   start_date (str): The start date to retrieve data (format: 'YYYY-MM-dd')
                   end_date (str): The end date to retrieve data (format: 'YYYY-MM-dd')
                   block_code (AgriquestBlocks): The AgriquestBlock name (Enum)
                   weather_type (AgriquestWeatherType) : The Agriquest weather indicator to retrieve (Enum)

               Returns:
                   result ('dataframe'):  pandas dataframe
               """
        # date convert
        start_datetime = datetime.strptime(start_date, "%Y-%m-%d").date()
        end_datetime = datetime.strptime(end_date, "%Y-%m-%d").date()

        # check if the block is dedicated to France
        isFrance = self.__agriquest_service.is_block_for_france(block_code)

        # build the weather indicator list
        weather_indicators = self.__agriquest_service.weather_indicators_builder(start_datetime, end_datetime, isFrance)

        # call the weather endpoint to retrieve data
        result = self.__agriquest_service.get_agriquest_block_weather_data(start_date=start_date, end_date=end_date,
                                                                           block_code=block_code,
                                                                           indicator_list=weather_indicators,
                                                                           weather_type=weather_type)

        return result

    def get_agriquest_ndvi_block_data(self,
                                      day_of_measure: str,
                                      block_code: AgriquestBlocks,
                                      commodity_code: AgriquestCommodityCode
                                      ):
        """Retrieve data on all AMU of an AgriquestBlock for NDVI index

               Args:
                   day_of_measure (str) : The date of measure (format: 'YYYY-MM-dd')
                   block_code (AgriquestBlocks) : The AgriquestBlock name (Enum)
                   commodity_code (AgriquestCommodityCode) : The commodity code (Enum)
               Returns:
                   result ('dataframe'):  pandas dataframe result
               """

        # call the weather endpoint to retrieve data, indicator of NDVI = 1
        result = self.__agriquest_service.get_agriquest_block_ndvi_data(date=day_of_measure, block_code=block_code,
                                                                        commodity=commodity_code, indicator_list=[1])

        return result

    ###########################################
    #           ANALYTICS PROCESSOR           #
    ###########################################

    def get_mr_time_series(self,
                           polygon,
                           start_date: str = "2010-01-01",
                           end_date=None,
                           list_sensors=["micasense", "sequoia", "m4c", "sentinel_2",
                                         "landsat_8", "landsat_9", "cbers4", "kazstsat",
                                         "alsat_1b", "huanjing_2", "deimos", "gaofen_1", "gaofen_6",
                                         "resourcesat2", "dmc_2", "landsat_5", "landsat_7",
                                         "spot", "rapideye_3a", "rapideye_1b"],
                           denoiser: bool = True,
                           smoother: str = "ww",
                           eoc: bool = True,
                           aggregation: str = "mean",
                           index: str = "ndvi",
                           raw_data: bool = False
                           ):

        """Retrieve mr time series on the collection targeted.

        Args:
            start_date : The start date of the time series
            end_date : The end date of the time series
            list_sensors : The Satellite Imagery Collection targeted
            denoiser : A boolean value indicating whether a denoising operation should be applied or not.
            smoother : The type or name of the smoothing technique or algorithm to be used.
            eoc : A boolean value indicating whether the "end of curve" detection should be performed.
            func : The type or name of the function to be applied to the data.
            index : The type or name of the index used for data manipulation or referencing
            raw_data : A boolean value indicating whether the data is in its raw/unprocessed form.
            polygon : A string representing a polygon.

        Returns:
            string : s3 bucket path
        """
        task_id = self.__analytics_processor_service.launch_mr_time_series_processor(
            start_date=start_date,
            end_date=end_date,
            polygon=polygon,
            raw_data=raw_data,
            denoiser=denoiser,
            smoother=smoother,
            aggregation=aggregation,
            list_sensors=list_sensors,
            index=index,
            eoc=eoc,


        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        return self.__analytics_processor_service.get_s3_path_from_task_and_processor(task_id, processor_name="mrts")

    def get_harvest_analytics(self,
                              season_duration: int,
                              season_start_day: int,
                              season_start_month: int,
                              crop: Enum,
                              year: int,
                              geometry: str,
                              harvest_type: Harvest):
        """launch a harvest analytics processor and get the metrics in a panda dataframe object

            Args:
                season_duration (int): the duration of the season in days,
                season_start_day (int): the start day value (1 - 31),
                season_start_month (int): the start month value (1 - 12),
                crop (Enum): the geosys crop code,
                year (int): the year value,
                geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
                harvest_type (Harvest): the type of Harvest analytics (INSEASON/HISTORICAL)

            Returns:
                A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_harvest_processor(
            season_duration=season_duration,
            season_start_day=season_start_day,
            season_start_month=season_start_month,
            seasonfield_id=sf_unique_id,
            geometry=geometry,
            crop=crop.value,
            year=year,
            harvest_type=harvest_type
        )

        self.logger.info(f"Task Id: {task_id}")

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        if harvest_type == Harvest.HARVEST_IN_SEASON:
            schema = "INSEASON_HARVEST"
        else:
            schema = "HISTORICAL_HARVEST"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

    def get_emergence_analytics(self,
                                season_duration: int,
                                season_start_day: int,
                                season_start_month: int,
                                crop: Enum,
                                year: int,
                                geometry: str,
                                emergence_type: Emergence):
        """launch an emergence analytics processor and get the metrics in a panda dataframe object

            Args:
                season_duration (int): the duration of the season in days,
                season_start_day (int): the start day value (1 - 31),
                season_start_month (int): the start month value (1 - 12),
                crop (Enum): the crop code,
                year (int): the year value,
                geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
                emergence_type (Emergence): the type of Emergence analytics (INSEASON/HISTORICAL/DELAY)

            Returns:
                A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_emergence_processor(
            season_duration=season_duration,
            season_start_day=season_start_day,
            season_start_month=season_start_month,
            seasonfield_id=sf_unique_id,
            geometry=geometry,
            crop=crop.value,
            year=year,
            emergence_type=emergence_type
        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        if emergence_type == Emergence.EMERGENCE_IN_SEASON:
            schema = "INSEASON_EMERGENCE"
        elif emergence_type == Emergence.EMERGENCE_HISTORICAL:
            schema = "HISTORICAL_EMERGENCE"
        else:
            schema = "EMERGENCE_DELAY"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

    def get_brazil_crop_id_analytics(self,
                                     start_date: str,
                                     end_date: str,
                                     season: CropIdSeason,
                                     geometry: str):
        """launch a brazil-in-season-crop-id analytics processor and get the metrics in a panda dataframe object

            Args:
                start_date (str) : the start date used for the request (format YYYY-MM-dd)
                end_date (str) : the end date used for the request (format YYYY-MM-dd)
                season (CropIdSeason): the season name,
                geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

            Returns:
                A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_brazil_in_season_crop_id_processor(
            start_date=start_date,
            end_date=end_date,
            seasonfield_id=sf_unique_id,
            geometry=geometry,
            season=season.value
        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        schema = "CROP_IDENTIFICATION"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

    def get_potential_score_analytics(self,
                                      end_date: str,
                                      nb_historical_years: int,
                                      season_duration: int,
                                      season_start_day: int,
                                      season_start_month: int,
                                      sowing_date: str,
                                      crop: Enum,
                                      geometry: str):
        """launch a potential score analytics processor and get the metrics in a panda dataframe object

            Args:
                season_duration (int): the duration of the season in days,
                season_start_day (int): the start day value (1 - 31),
                season_start_month (int): the start month value (1 - 12),
                crop (Enum): the crop code,
                end_date (str): end date used to calculate potential score
                sowing_date (str): sowing date of the filed used to calculate potential score
                nb_historical_years (int): number of historical years data to calculate potential score
                geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

            Returns:
                A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_potential_score_processor(
            end_date=end_date,
            nb_historical_years=nb_historical_years,
            sowing_date=sowing_date,
            season_duration=season_duration,
            season_start_day=season_start_day,
            season_start_month=season_start_month,
            seasonfield_id=sf_unique_id,
            geometry=geometry,
            crop=crop.value
        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        schema = "POTENTIAL_SCORE"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

    def get_greenness_analytics(self,
                                start_date: str,
                                end_date: str,
                                sowing_date: str,
                                crop: Enum,
                                geometry: str):
        """launch a greenness analytics processor and get the metrics in a panda dataframe object

                    Args:
                        start_date (str) : the start date used for the request (format YYYY-MM-dd)
                        end_date (str) : the end date used for the request (format YYYY-MM-dd)
                        sowing_date(str): sowing date of the field used to calculate potential score
                        crop (Enum): the crop code,
                        geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

                    Returns:
                        A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_greenness_processor(
            start_date=start_date,
            end_date=end_date,
            sowing_date=sowing_date,
            seasonfield_id=sf_unique_id,
            geometry=geometry,
            crop=crop.value
        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        schema = "GREENNESS"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

    def get_harvest_readiness_analytics(self,
                                        start_date: str,
                                        end_date: str,
                                        sowing_date: str,
                                        crop: Enum,
                                        geometry: str):
        """launch a harvest readiness analytics processor and get the metrics in a panda dataframe object

            Args:
                start_date (str) : the start date used for the request (format YYYY-MM-dd)
                end_date (str) : the end date used for the request (format YYYY-MM-dd)
                sowing_date(str): sowing date of the field used to calculate potential score
                crop (Enum): the crop code,
                geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

            Returns:
                A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_harvest_readiness_processor(
            start_date=start_date,
            end_date=end_date,
            sowing_date=sowing_date,
            seasonfield_id=sf_unique_id,
            geometry=geometry,
            crop=crop.value
        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        schema = "HARVEST_READINESS"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

    def get_planted_area_analytics(self,
                                   start_date: str,
                                   end_date: str,
                                   geometry: str):
        """launch a planted area analytics processor and get the metrics in a panda dataframe object

                    Args:
                        start_date (str) : the start date used for the request (format YYYY-MM-dd)
                        end_date (str) : the end date used for the request (format YYYY-MM-dd)
                        geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
                    Returns:
                        A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_planted_area_processor(start_date, end_date, sf_unique_id)
        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        schema = "PLANTED_AREA"

        # if task successfully completed, get latests metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)


    def get_zarc_analytics(self,
                           start_date_emergence: str,
                           end_date_emergence: str,
                           nb_days_sowing_emergence: int,
                           crop: Enum,
                           soil_type: ZarcSoilType,
                           cycle: ZarcCycleType,
                           geometry: str):
        """launch a zarc analytics processor and get the metrics in a panda dataframe object

                        Args:
                            start_date_emergence (str) : the emergence start date used for the request (format YYYY-MM-dd)
                            end_date_emergence (str) : the emergence end date used for the request (format YYYY-MM-dd)
                            nb_days_sowing_emergence (int): the number of days for sowing emergence
                            crop (Enum): the zarc crop code,
                            soil_type (ZarcSoilType): the zarc soil type (1/2/3),
                            cycle (ZarcCycleType): the zarc cycle type (1/2/3),
                            geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
                        Returns:
                            A Pandas DataFrame containing several columns with metrics
        """
        # validate and convert the geometry to WKT
        geometry = Helper.convert_to_wkt(geometry)

        if geometry is None:
            raise ValueError("The geometry is not a valid WKT of GeoJson")

        # get municipio id from geometry
        municipio_id = self.__gis_service.get_municipio_id_from_geometry(geometry)

        if municipio_id == 0:
            raise ValueError(f"No municipio id found for this geometry")

        # Create seasonfield from geometry and extract uniqueId
        sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
        sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

        task_id = self.__analytics_processor_service.launch_zarc_processor(
            start_date_emergence=start_date_emergence,
            end_date_emergence=end_date_emergence,
            crop=crop.value,
            cycle=cycle.value,
            soil_type=soil_type.value,
            municipio=municipio_id,
            nb_days_sowing_emergence=nb_days_sowing_emergence,
            seasonfield_id=sf_unique_id
        )

        # check the task status to continue or not the process
        self.__analytics_processor_service.wait_and_check_task_status(task_id)

        # Analytics Schema
        schema = "ZARC"

        # if task successfully completed, get metrics from analytics fabric
        return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

__get_images_as_dataset(polygon, start_date, end_date, collections, indicator)

Returns all the 'sensors_list' images covering 'polygon' between 'start_date' and 'end_date' as a xarray dataset.

Parameters:
  • polygon

    A string representing the polygon that the images will be covering.

  • start_date

    The date from which the method will start looking for images.

  • end_date

    The date at which the method will stop looking images.

  • collections

    A list of Satellite Imagery Collection.

  • indicator

    A string representing the indicator whose time series the user wants.

Returns:
  • ndarray[Any, dtype[float64]]

    The image's numpy array.

Source code in geosyspy/geosys.py
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def __get_images_as_dataset(self, polygon: str,
                            start_date: datetime,
                            end_date: datetime,
                            collections: list[SatelliteImageryCollection],
                            indicator: str) -> 'np.ndarray[Any , np.dtype[np.float64]]':
    """Returns all the 'sensors_list' images covering 'polygon' between
    'start_date' and 'end_date' as a xarray dataset.

    Args:
        polygon : A string representing the polygon that the images will be covering.
        start_date : The date from which the method will start looking for images.
        end_date : The date at which the method will stop looking images.
        collections : A list of Satellite Imagery Collection.
        indicator : A string representing the indicator whose time series the user wants.

    Returns:
        The image's numpy array.

    """

    def get_coordinates_by_pixel(raster):
        """Returns the coordinates in meters in the raster's CRS
        from its pixels' grid coordinates."""

        img = raster.read()
        band1 = img[0]
        height = band1.shape[0]
        width = band1.shape[1]
        cols, rows = np.meshgrid(np.arange(width), np.arange(height))
        xs, ys = rasterio.transform.xy(raster.transform, rows, cols)
        lons = np.array(xs)
        lats = np.array(ys)
        lst_lats = [lat[0] for lat in lats]
        lst_lons = list(lons[0])
        return {"y": lst_lats, "x": lst_lons}

    # Selects the covering images in the provided date range
    # and sorts them by resolution, from the highest to the lowest.
    # Keeps only the first image if two are found on the same date.
    df_coverage = self.__map_product_service.get_satellite_coverage(
        polygon, start_date, end_date, indicator, collections
    )

    # Return empty dataset if no coverage on the polygon between start_date, end_date
    if df_coverage.empty:
        return xr.Dataset()

    df_coverage["image.date"] = pd.to_datetime(
        df_coverage["image.date"], infer_datetime_format=True
    )
    df_coverage = df_coverage.sort_values(
        by=["image.spatialResolution", "image.date"], ascending=[True, True]
    ).drop_duplicates(subset="image.date", keep="first")

    # Creates a dictionary that contains a zip archive containing the tif file
    # for each image id and some additional data (bands, sensor...)
    dict_archives = {}
    for i, row in df_coverage.iterrows():
        if indicator.upper() != "REFLECTANCE":
            bands = [indicator]
        else:
            bands = row["image.availableBands"]
        dict_archives[row["image.id"]] = {
            "byte_archive": self.__map_product_service.get_zipped_tiff(
                row["seasonField.id"], row["image.id"], indicator
            ).content,
            "bands": bands,
            "date": row["image.date"],
            "sensor": row["image.sensor"],
        }

    # Extracts the tif files from  the zip archives in memory
    # and transforms them into a list of xarray DataArrays.
    # A list of all the raster's crs is also created in order
    # to merge this data in the final xarray Dataset later on.
    list_xarr = []
    list_crs = []
    first_img_id = df_coverage.iloc[0]["image.id"]
    for img_id, dict_data in dict_archives.items():
        with zipfile.ZipFile(io.BytesIO(dict_data["byte_archive"]), "r") as archive:
            images_in_bytes = [archive.read(file) for file in archive.namelist() if file.endswith('.tif')]
            for image in images_in_bytes:
                with MemoryFile(image) as memfile:
                    with memfile.open() as raster:
                        dict_coords = get_coordinates_by_pixel(raster)
                        xarr = xr.DataArray(
                            raster.read(masked=True),
                            dims=["band", "y", "x"],
                            coords={
                                "band": dict_data["bands"],
                                "y": dict_coords["y"],
                                "x": dict_coords["x"],
                                "time": dict_data["date"],
                            },
                        )

                        if img_id == first_img_id:
                            len_y = len(dict_coords["y"])
                            len_x = len(dict_coords["x"])
                            print(
                                f"The highest resolution's image grid size is {(len_x, len_y)}"
                            )
                        else:
                            self.logger.info(
                                f"interpolating {img_id} to {first_img_id}'s grid"
                            )
                            xarr = xarr.interp(
                                x=list_xarr[0].coords["x"].data,
                                y=list_xarr[0].coords["y"].data,
                                method="linear",
                            )
                        list_xarr.append(xarr)
                        list_crs.append(raster.crs.to_string())

    # Adds the img's raster's crs to the initial dataframe
    df_coverage["crs"] = list_crs

    # Concatenates all the DataArrays in list_xarr in order
    # to create one final DataArray with an additional dimension
    # 'time'. This final DataArray is then transformed into
    # a xarray Dataset containing one data variable "reflectance".

    final_xarr = xr.concat(list_xarr, "time")
    dataset = xr.Dataset(data_vars={indicator.lower(): final_xarr})

    # Adds additional metadata to the dataset.
    dataset = dataset.assign_coords(
        **{
            k: ("time", np.array(v))
            for k, v in df_coverage[
                [
                    "image.id",
                    "image.sensor",
                    "image.soilMaterial",
                    "image.spatialResolution",
                    "image.weather",
                    "crs",
                ]
            ]
            .to_dict(orient="list")
            .items()
        }
    )
    return dataset

create_schema_id(schema_id, schema)

Create a schema in Analytics Fabrics

Parameters:
  • schema_id (str) –

    The schema id to create

  • schema (dict) –

    Dict representing the schema {'property_name': 'property_type'}

Returns:
  • A http response object.

Source code in geosyspy/geosys.py
343
344
345
346
347
348
349
350
351
352
353
354
def create_schema_id(self, schema_id: str,
                     schema: dict):
    """Create a schema in Analytics Fabrics

    Args:
        schema_id: The schema id to create
        schema: Dict representing the schema {'property_name': 'property_type'}

    Returns:
        A http response object.
    """
    return self.__analytics_fabric_service.create_schema_id(schema_id=schema_id, schema=schema)

download_image(image_reference, path='')

Downloads a satellite image locally

Parameters:
  • image_reference (ImageReference) –

    An ImageReference object representing the image to download

  • path (str, default: '' ) –

    the path to download the image to

Source code in geosyspy/geosys.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def download_image(self, image_reference,
                   path: str = ""):
    """Downloads a satellite image locally

    Args:
        image_reference (ImageReference): An ImageReference object representing the image to download
        path (str): the path to download the image to
    """

    response_zipped_tiff = self.__map_product_service.get_zipped_tiff(
        image_reference.season_field_id, image_reference.image_id
    )
    if path == "":
        path = Path.cwd() / f"image_{image_reference.image_id}_tiff.zip"
    with open(path, "wb") as f:
        self.logger.info(f"writing to {path}")
        f.write(response_zipped_tiff.content)

get_agriquest_ndvi_block_data(day_of_measure, block_code, commodity_code)

Retrieve data on all AMU of an AgriquestBlock for NDVI index

Parameters:
  • day_of_measure (str) ) –

    The date of measure (format: 'YYYY-MM-dd')

  • block_code (AgriquestBlocks) ) –

    The AgriquestBlock name (Enum)

  • commodity_code (AgriquestCommodityCode) ) –

    The commodity code (Enum)

Returns: result ('dataframe'): pandas dataframe result

Source code in geosyspy/geosys.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def get_agriquest_ndvi_block_data(self,
                                  day_of_measure: str,
                                  block_code: AgriquestBlocks,
                                  commodity_code: AgriquestCommodityCode
                                  ):
    """Retrieve data on all AMU of an AgriquestBlock for NDVI index

           Args:
               day_of_measure (str) : The date of measure (format: 'YYYY-MM-dd')
               block_code (AgriquestBlocks) : The AgriquestBlock name (Enum)
               commodity_code (AgriquestCommodityCode) : The commodity code (Enum)
           Returns:
               result ('dataframe'):  pandas dataframe result
           """

    # call the weather endpoint to retrieve data, indicator of NDVI = 1
    result = self.__agriquest_service.get_agriquest_block_ndvi_data(date=day_of_measure, block_code=block_code,
                                                                    commodity=commodity_code, indicator_list=[1])

    return result

get_agriquest_weather_block_data(start_date, end_date, block_code, weather_type)

Retrieve data on all AMU of an AgriquestBlock for the specified weather indicator.

Parameters:
  • start_date (str) –

    The start date to retrieve data (format: 'YYYY-MM-dd')

  • end_date (str) –

    The end date to retrieve data (format: 'YYYY-MM-dd')

  • block_code (AgriquestBlocks) –

    The AgriquestBlock name (Enum)

  • weather_type (AgriquestWeatherType) ) –

    The Agriquest weather indicator to retrieve (Enum)

Returns:
  • result( dataframe ) –

    pandas dataframe

Source code in geosyspy/geosys.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def get_agriquest_weather_block_data(self,
                                     start_date: str,
                                     end_date: str,
                                     block_code: AgriquestBlocks,
                                     weather_type: AgriquestWeatherType
                                     ):
    """Retrieve data on all AMU of an AgriquestBlock for the specified weather indicator.

           Args:
               start_date (str): The start date to retrieve data (format: 'YYYY-MM-dd')
               end_date (str): The end date to retrieve data (format: 'YYYY-MM-dd')
               block_code (AgriquestBlocks): The AgriquestBlock name (Enum)
               weather_type (AgriquestWeatherType) : The Agriquest weather indicator to retrieve (Enum)

           Returns:
               result ('dataframe'):  pandas dataframe
           """
    # date convert
    start_datetime = datetime.strptime(start_date, "%Y-%m-%d").date()
    end_datetime = datetime.strptime(end_date, "%Y-%m-%d").date()

    # check if the block is dedicated to France
    isFrance = self.__agriquest_service.is_block_for_france(block_code)

    # build the weather indicator list
    weather_indicators = self.__agriquest_service.weather_indicators_builder(start_datetime, end_datetime, isFrance)

    # call the weather endpoint to retrieve data
    result = self.__agriquest_service.get_agriquest_block_weather_data(start_date=start_date, end_date=end_date,
                                                                       block_code=block_code,
                                                                       indicator_list=weather_indicators,
                                                                       weather_type=weather_type)

    return result

get_available_crops()

Build the list of available crop codes for the connected user in an enum

Returns:
  • crop_enum

    an Enum containing all available crop codes of the connected user

Source code in geosyspy/geosys.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def get_available_crops(self):
    """Build the list of available crop codes for the connected user in an enum

    Returns:
        crop_enum: an Enum containing all available crop codes of the connected user
    """
    # get crop code list
    result = self.__master_data_management_service.get_available_crops_code()

    # build an enum with all available crop codes for the connected user
    crop_enum = Enum('CropEnum',
                     {crop['code'] if not crop['code'][0].isdigit() else '_' + crop['code']: crop['code'] for crop
                      in result})

    return crop_enum

get_available_permissions()

Build the list of available permissions codes for the connected user in an enum

Returns:
  • permissions

    a string array containing all available permissions of the connected user

Source code in geosyspy/geosys.py
415
416
417
418
419
420
421
422
423
424
425
426
427
def get_available_permissions(self):
    """Build the list of available permissions codes for the connected user in an enum

    Returns:
        permissions: a string array containing all available permissions of the connected user
    """
    # get crop code list
    result = self.__master_data_management_service.get_permission_codes()

    # build a string array with all available permission codes for the connected user
    permissions = result["permissions"]

    return permissions

get_brazil_crop_id_analytics(start_date, end_date, season, geometry)

launch a brazil-in-season-crop-id analytics processor and get the metrics in a panda dataframe object

Parameters:
  • start_date (str) ) –

    the start date used for the request (format YYYY-MM-dd)

  • end_date (str) ) –

    the end date used for the request (format YYYY-MM-dd)

  • season (CropIdSeason) –

    the season name,

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON)

Returns:
  • A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
def get_brazil_crop_id_analytics(self,
                                 start_date: str,
                                 end_date: str,
                                 season: CropIdSeason,
                                 geometry: str):
    """launch a brazil-in-season-crop-id analytics processor and get the metrics in a panda dataframe object

        Args:
            start_date (str) : the start date used for the request (format YYYY-MM-dd)
            end_date (str) : the end date used for the request (format YYYY-MM-dd)
            season (CropIdSeason): the season name,
            geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

        Returns:
            A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_brazil_in_season_crop_id_processor(
        start_date=start_date,
        end_date=end_date,
        seasonfield_id=sf_unique_id,
        geometry=geometry,
        season=season.value
    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    schema = "CROP_IDENTIFICATION"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_emergence_analytics(season_duration, season_start_day, season_start_month, crop, year, geometry, emergence_type)

launch an emergence analytics processor and get the metrics in a panda dataframe object

Parameters:
  • season_duration (int) –

    the duration of the season in days,

  • season_start_day (int) –

    the start day value (1 - 31),

  • season_start_month (int) –

    the start month value (1 - 12),

  • crop (Enum) –

    the crop code,

  • year (int) –

    the year value,

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON),

  • emergence_type (Emergence) –

    the type of Emergence analytics (INSEASON/HISTORICAL/DELAY)

Returns:
  • A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def get_emergence_analytics(self,
                            season_duration: int,
                            season_start_day: int,
                            season_start_month: int,
                            crop: Enum,
                            year: int,
                            geometry: str,
                            emergence_type: Emergence):
    """launch an emergence analytics processor and get the metrics in a panda dataframe object

        Args:
            season_duration (int): the duration of the season in days,
            season_start_day (int): the start day value (1 - 31),
            season_start_month (int): the start month value (1 - 12),
            crop (Enum): the crop code,
            year (int): the year value,
            geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
            emergence_type (Emergence): the type of Emergence analytics (INSEASON/HISTORICAL/DELAY)

        Returns:
            A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_emergence_processor(
        season_duration=season_duration,
        season_start_day=season_start_day,
        season_start_month=season_start_month,
        seasonfield_id=sf_unique_id,
        geometry=geometry,
        crop=crop.value,
        year=year,
        emergence_type=emergence_type
    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    if emergence_type == Emergence.EMERGENCE_IN_SEASON:
        schema = "INSEASON_EMERGENCE"
    elif emergence_type == Emergence.EMERGENCE_HISTORICAL:
        schema = "HISTORICAL_EMERGENCE"
    else:
        schema = "EMERGENCE_DELAY"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_greenness_analytics(start_date, end_date, sowing_date, crop, geometry)

launch a greenness analytics processor and get the metrics in a panda dataframe object

Parameters:
  • start_date (str) ) –

    the start date used for the request (format YYYY-MM-dd)

  • end_date (str) ) –

    the end date used for the request (format YYYY-MM-dd)

  • sowing_date(str)

    sowing date of the field used to calculate potential score

  • crop (Enum) –

    the crop code,

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON)

Returns:
  • A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
def get_greenness_analytics(self,
                            start_date: str,
                            end_date: str,
                            sowing_date: str,
                            crop: Enum,
                            geometry: str):
    """launch a greenness analytics processor and get the metrics in a panda dataframe object

                Args:
                    start_date (str) : the start date used for the request (format YYYY-MM-dd)
                    end_date (str) : the end date used for the request (format YYYY-MM-dd)
                    sowing_date(str): sowing date of the field used to calculate potential score
                    crop (Enum): the crop code,
                    geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

                Returns:
                    A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_greenness_processor(
        start_date=start_date,
        end_date=end_date,
        sowing_date=sowing_date,
        seasonfield_id=sf_unique_id,
        geometry=geometry,
        crop=crop.value
    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    schema = "GREENNESS"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_harvest_analytics(season_duration, season_start_day, season_start_month, crop, year, geometry, harvest_type)

launch a harvest analytics processor and get the metrics in a panda dataframe object

Parameters:
  • season_duration (int) –

    the duration of the season in days,

  • season_start_day (int) –

    the start day value (1 - 31),

  • season_start_month (int) –

    the start month value (1 - 12),

  • crop (Enum) –

    the geosys crop code,

  • year (int) –

    the year value,

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON),

  • harvest_type (Harvest) –

    the type of Harvest analytics (INSEASON/HISTORICAL)

Returns:
  • A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
def get_harvest_analytics(self,
                          season_duration: int,
                          season_start_day: int,
                          season_start_month: int,
                          crop: Enum,
                          year: int,
                          geometry: str,
                          harvest_type: Harvest):
    """launch a harvest analytics processor and get the metrics in a panda dataframe object

        Args:
            season_duration (int): the duration of the season in days,
            season_start_day (int): the start day value (1 - 31),
            season_start_month (int): the start month value (1 - 12),
            crop (Enum): the geosys crop code,
            year (int): the year value,
            geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
            harvest_type (Harvest): the type of Harvest analytics (INSEASON/HISTORICAL)

        Returns:
            A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_harvest_processor(
        season_duration=season_duration,
        season_start_day=season_start_day,
        season_start_month=season_start_month,
        seasonfield_id=sf_unique_id,
        geometry=geometry,
        crop=crop.value,
        year=year,
        harvest_type=harvest_type
    )

    self.logger.info(f"Task Id: {task_id}")

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    if harvest_type == Harvest.HARVEST_IN_SEASON:
        schema = "INSEASON_HARVEST"
    else:
        schema = "HISTORICAL_HARVEST"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_harvest_readiness_analytics(start_date, end_date, sowing_date, crop, geometry)

launch a harvest readiness analytics processor and get the metrics in a panda dataframe object

Parameters:
  • start_date (str) ) –

    the start date used for the request (format YYYY-MM-dd)

  • end_date (str) ) –

    the end date used for the request (format YYYY-MM-dd)

  • sowing_date(str)

    sowing date of the field used to calculate potential score

  • crop (Enum) –

    the crop code,

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON)

Returns:
  • A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
def get_harvest_readiness_analytics(self,
                                    start_date: str,
                                    end_date: str,
                                    sowing_date: str,
                                    crop: Enum,
                                    geometry: str):
    """launch a harvest readiness analytics processor and get the metrics in a panda dataframe object

        Args:
            start_date (str) : the start date used for the request (format YYYY-MM-dd)
            end_date (str) : the end date used for the request (format YYYY-MM-dd)
            sowing_date(str): sowing date of the field used to calculate potential score
            crop (Enum): the crop code,
            geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

        Returns:
            A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_harvest_readiness_processor(
        start_date=start_date,
        end_date=end_date,
        sowing_date=sowing_date,
        seasonfield_id=sf_unique_id,
        geometry=geometry,
        crop=crop.value
    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    schema = "HARVEST_READINESS"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_metrics(polygon, schema_id, start_date, end_date)

Returns metrics from Analytics Fabrics in a pandas dataframe.

Parameters:
  • polygon

    A string representing a polygon.

  • start_date

    A datetime object representing the start date of the date interval the user wants to filter on.

  • end_date

    A datetime object representing the final date of the date interval the user wants to filter on.

  • schema_id

    A string representing a schema existing in Analytics Fabrics

Returns:
  • df

    A Pandas DataFrame containing severals columns with metrics

Source code in geosyspy/geosys.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def get_metrics(self, polygon: str,
                schema_id: str,
                start_date: datetime,
                end_date: datetime):
    """Returns metrics from Analytics Fabrics in a pandas dataframe.

    Args:
        polygon : A string representing a polygon.
        start_date : A datetime object representing the start date of the date interval the user wants to filter on.
        end_date : A datetime object representing the final date of the date interval the user wants to filter on.
        schema_id : A string representing a schema existing in Analytics Fabrics

    Returns:
        df : A Pandas DataFrame containing severals columns with metrics

    """

    season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)
    season_field_unique_id: str = self.__master_data_management_service.get_season_field_unique_id(season_field_id)

    return self.__analytics_fabric_service.get_metrics(season_field_unique_id, schema_id, start_date, end_date)

get_mr_time_series(polygon, start_date='2010-01-01', end_date=None, list_sensors=['micasense', 'sequoia', 'm4c', 'sentinel_2', 'landsat_8', 'landsat_9', 'cbers4', 'kazstsat', 'alsat_1b', 'huanjing_2', 'deimos', 'gaofen_1', 'gaofen_6', 'resourcesat2', 'dmc_2', 'landsat_5', 'landsat_7', 'spot', 'rapideye_3a', 'rapideye_1b'], denoiser=True, smoother='ww', eoc=True, aggregation='mean', index='ndvi', raw_data=False)

Retrieve mr time series on the collection targeted.

Parameters:
  • start_date

    The start date of the time series

  • end_date

    The end date of the time series

  • list_sensors

    The Satellite Imagery Collection targeted

  • denoiser

    A boolean value indicating whether a denoising operation should be applied or not.

  • smoother

    The type or name of the smoothing technique or algorithm to be used.

  • eoc

    A boolean value indicating whether the "end of curve" detection should be performed.

  • func

    The type or name of the function to be applied to the data.

  • index

    The type or name of the index used for data manipulation or referencing

  • raw_data

    A boolean value indicating whether the data is in its raw/unprocessed form.

  • polygon

    A string representing a polygon.

Returns:
  • string

    s3 bucket path

Source code in geosyspy/geosys.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def get_mr_time_series(self,
                       polygon,
                       start_date: str = "2010-01-01",
                       end_date=None,
                       list_sensors=["micasense", "sequoia", "m4c", "sentinel_2",
                                     "landsat_8", "landsat_9", "cbers4", "kazstsat",
                                     "alsat_1b", "huanjing_2", "deimos", "gaofen_1", "gaofen_6",
                                     "resourcesat2", "dmc_2", "landsat_5", "landsat_7",
                                     "spot", "rapideye_3a", "rapideye_1b"],
                       denoiser: bool = True,
                       smoother: str = "ww",
                       eoc: bool = True,
                       aggregation: str = "mean",
                       index: str = "ndvi",
                       raw_data: bool = False
                       ):

    """Retrieve mr time series on the collection targeted.

    Args:
        start_date : The start date of the time series
        end_date : The end date of the time series
        list_sensors : The Satellite Imagery Collection targeted
        denoiser : A boolean value indicating whether a denoising operation should be applied or not.
        smoother : The type or name of the smoothing technique or algorithm to be used.
        eoc : A boolean value indicating whether the "end of curve" detection should be performed.
        func : The type or name of the function to be applied to the data.
        index : The type or name of the index used for data manipulation or referencing
        raw_data : A boolean value indicating whether the data is in its raw/unprocessed form.
        polygon : A string representing a polygon.

    Returns:
        string : s3 bucket path
    """
    task_id = self.__analytics_processor_service.launch_mr_time_series_processor(
        start_date=start_date,
        end_date=end_date,
        polygon=polygon,
        raw_data=raw_data,
        denoiser=denoiser,
        smoother=smoother,
        aggregation=aggregation,
        list_sensors=list_sensors,
        index=index,
        eoc=eoc,


    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    return self.__analytics_processor_service.get_s3_path_from_task_and_processor(task_id, processor_name="mrts")

get_planted_area_analytics(start_date, end_date, geometry)

launch a planted area analytics processor and get the metrics in a panda dataframe object

Parameters:
  • start_date (str) ) –

    the start date used for the request (format YYYY-MM-dd)

  • end_date (str) ) –

    the end date used for the request (format YYYY-MM-dd)

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON),

Returns: A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
def get_planted_area_analytics(self,
                               start_date: str,
                               end_date: str,
                               geometry: str):
    """launch a planted area analytics processor and get the metrics in a panda dataframe object

                Args:
                    start_date (str) : the start date used for the request (format YYYY-MM-dd)
                    end_date (str) : the end date used for the request (format YYYY-MM-dd)
                    geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
                Returns:
                    A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_planted_area_processor(start_date, end_date, sf_unique_id)
    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    schema = "PLANTED_AREA"

    # if task successfully completed, get latests metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_potential_score_analytics(end_date, nb_historical_years, season_duration, season_start_day, season_start_month, sowing_date, crop, geometry)

launch a potential score analytics processor and get the metrics in a panda dataframe object

Parameters:
  • season_duration (int) –

    the duration of the season in days,

  • season_start_day (int) –

    the start day value (1 - 31),

  • season_start_month (int) –

    the start month value (1 - 12),

  • crop (Enum) –

    the crop code,

  • end_date (str) –

    end date used to calculate potential score

  • sowing_date (str) –

    sowing date of the filed used to calculate potential score

  • nb_historical_years (int) –

    number of historical years data to calculate potential score

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON)

Returns:
  • A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
def get_potential_score_analytics(self,
                                  end_date: str,
                                  nb_historical_years: int,
                                  season_duration: int,
                                  season_start_day: int,
                                  season_start_month: int,
                                  sowing_date: str,
                                  crop: Enum,
                                  geometry: str):
    """launch a potential score analytics processor and get the metrics in a panda dataframe object

        Args:
            season_duration (int): the duration of the season in days,
            season_start_day (int): the start day value (1 - 31),
            season_start_month (int): the start month value (1 - 12),
            crop (Enum): the crop code,
            end_date (str): end date used to calculate potential score
            sowing_date (str): sowing date of the filed used to calculate potential score
            nb_historical_years (int): number of historical years data to calculate potential score
            geometry (str): the geometry to calculate the analytic (WKT or GeoJSON)

        Returns:
            A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_potential_score_processor(
        end_date=end_date,
        nb_historical_years=nb_historical_years,
        sowing_date=sowing_date,
        season_duration=season_duration,
        season_start_day=season_start_day,
        season_start_month=season_start_month,
        seasonfield_id=sf_unique_id,
        geometry=geometry,
        crop=crop.value
    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    schema = "POTENTIAL_SCORE"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

get_satellite_coverage_image_references(polygon, start_date, end_date, collections=[SatelliteImageryCollection.SENTINEL_2, SatelliteImageryCollection.LANDSAT_8])

Retrieves a list of images that covers a polygon on a specific date range. The return is a tuple: a dataframe with all the images covering the polygon, and a dictionary images_references. Key= a tuple (image_date, image_sensor). Value = an object image_reference, to use with the method download_image()

Parameters:
  • polygon (str) –

    The polygon

  • start_date (datetime) –

    The start date of the time series

  • end_date (datetime) –

    The end date of the time series

  • collections (list[SatelliteImageryCollection], default: [SENTINEL_2, LANDSAT_8] ) –

    The sensors to check the coverage on

Returns:
  • tuple

    images list and image references for downloading

Source code in geosyspy/geosys.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def get_satellite_coverage_image_references(self, polygon: str,
                                            start_date: datetime,
                                            end_date: datetime,
                                            collections: list[SatelliteImageryCollection] = [
                                                SatelliteImageryCollection.SENTINEL_2,
                                                SatelliteImageryCollection.LANDSAT_8]
                                            ) -> tuple:
    """Retrieves a list of images that covers a polygon on a specific date range.
    The return is a tuple: a dataframe with all the images covering the polygon, and
                a dictionary images_references. Key= a tuple (image_date, image_sensor).
                Value = an object image_reference, to use with the method `download_image()`

    Args:
        polygon: The polygon
        start_date: The start date of the time series
        end_date: The end date of the time series
        collections: The sensors to check the coverage on

    Returns:
        (tuple): images list and image references for downloading
    """
    # extract seasonfield id from geometry
    season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)

    df = self.__map_product_service.get_satellite_coverage(season_field_id, start_date, end_date, "", collections)
    images_references = {}
    if df is not None:
        for i, image in df.iterrows():
            images_references[
                (image["image.date"], image["image.sensor"])
            ] = image_reference.ImageReference(
                image["image.id"],
                image["image.date"],
                image["image.sensor"],
                image["seasonField.id"],
            )

    return df, images_references

get_satellite_image_time_series(polygon, start_date, end_date, collections, indicators)

Retrieve a pixel-by-pixel time series of the indicator on the collection targeted.

Parameters:
  • polygon

    The polygon

  • start_date

    The start date of the time series

  • end_date

    The end date of the time series

  • collections

    The Satellite Imagery Collection targeted

  • indicators

    The indicators to retrieve on the collections

Returns:
  • dataframe or xarray

    Either a pandas dataframe or a xarray for the time series

Source code in geosyspy/geosys.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def get_satellite_image_time_series(self, polygon: str,
                                    start_date: datetime,
                                    end_date: datetime,
                                    collections: list[SatelliteImageryCollection],
                                    indicators: [str]
                                    ):
    """Retrieve a pixel-by-pixel time series of the indicator on the collection targeted.

    Args:
        polygon : The polygon
        start_date : The start date of the time series
        end_date : The end date of the time series
        collections : The Satellite Imagery Collection targeted
        indicators : The indicators to retrieve on the collections

    Returns:
        ('dataframe or xarray'): Either a pandas dataframe or a xarray for the time series
    """

    if not collections:
        raise ValueError(
            "The argument collections is empty. It must be a list of SatelliteImageryCollection objects"
        )
    elif all([isinstance(elem, SatelliteImageryCollection) for elem in collections]):
        # extract seasonfield id from geometry
        season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)

        if set(collections).issubset(set(LR_SATELLITE_COLLECTION)):
            return self.__vts_service.get_time_series_by_pixel(
                season_field_id, start_date, end_date, indicators[0]
            )
        elif set(collections).issubset(set(MR_SATELLITE_COLLECTION)):
            return self.__get_images_as_dataset(
                season_field_id, start_date, end_date, collections, indicators[0]
            )
    else:
        raise TypeError(
            f"Argument collections must be a list of SatelliteImageryCollection objects"
        )

get_time_series(polygon, start_date, end_date, collection, indicators)

Retrieve a time series of the indicator for the aggregated polygon on the collection targeted.

Parameters:
  • polygon

    The polygon

  • start_date

    The start date of the time series

  • end_date

    The end date of the time series

  • collection

    The collection targeted

  • indicators

    The indicators to retrieve on the collection

Returns:
  • dataframe

    A pandas dataframe for the time series

Raises:
  • ValueError

    The collection doesn't exist

Source code in geosyspy/geosys.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def get_time_series(self, polygon: str,
                    start_date: datetime,
                    end_date: datetime,
                    collection: enumerate,
                    indicators: [str]) -> pd.DataFrame:
    """Retrieve a time series of the indicator for the aggregated polygon on the collection targeted.

    Args:
        polygon : The polygon
        start_date : The start date of the time series
        end_date : The end date of the time series
        collection : The collection targeted
        indicators : The indicators to retrieve on the collection

    Returns:
        (dataframe): A pandas dataframe for the time series

    Raises:
        ValueError: The collection doesn't exist
    """
    if collection in WeatherTypeCollection:
        return self.__weather_service.get_weather(
            polygon,
            start_date,
            end_date,
            collection,
            indicators,
        )
    elif collection in LR_SATELLITE_COLLECTION:
        # extract seasonfield id from geometry
        season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)
        return self.__vts_service.get_modis_time_series(
            season_field_id, start_date, end_date, indicators[0]
        )
    else:
        raise ValueError(f"{collection} collection doesn't exist")

get_zarc_analytics(start_date_emergence, end_date_emergence, nb_days_sowing_emergence, crop, soil_type, cycle, geometry)

launch a zarc analytics processor and get the metrics in a panda dataframe object

Parameters:
  • start_date_emergence (str) ) –

    the emergence start date used for the request (format YYYY-MM-dd)

  • end_date_emergence (str) ) –

    the emergence end date used for the request (format YYYY-MM-dd)

  • nb_days_sowing_emergence (int) –

    the number of days for sowing emergence

  • crop (Enum) –

    the zarc crop code,

  • soil_type (ZarcSoilType) –

    the zarc soil type (1/2/3),

  • cycle (ZarcCycleType) –

    the zarc cycle type (1/2/3),

  • geometry (str) –

    the geometry to calculate the analytic (WKT or GeoJSON),

Returns: A Pandas DataFrame containing several columns with metrics

Source code in geosyspy/geosys.py
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
def get_zarc_analytics(self,
                       start_date_emergence: str,
                       end_date_emergence: str,
                       nb_days_sowing_emergence: int,
                       crop: Enum,
                       soil_type: ZarcSoilType,
                       cycle: ZarcCycleType,
                       geometry: str):
    """launch a zarc analytics processor and get the metrics in a panda dataframe object

                    Args:
                        start_date_emergence (str) : the emergence start date used for the request (format YYYY-MM-dd)
                        end_date_emergence (str) : the emergence end date used for the request (format YYYY-MM-dd)
                        nb_days_sowing_emergence (int): the number of days for sowing emergence
                        crop (Enum): the zarc crop code,
                        soil_type (ZarcSoilType): the zarc soil type (1/2/3),
                        cycle (ZarcCycleType): the zarc cycle type (1/2/3),
                        geometry (str): the geometry to calculate the analytic (WKT or GeoJSON),
                    Returns:
                        A Pandas DataFrame containing several columns with metrics
    """
    # validate and convert the geometry to WKT
    geometry = Helper.convert_to_wkt(geometry)

    if geometry is None:
        raise ValueError("The geometry is not a valid WKT of GeoJson")

    # get municipio id from geometry
    municipio_id = self.__gis_service.get_municipio_id_from_geometry(geometry)

    if municipio_id == 0:
        raise ValueError(f"No municipio id found for this geometry")

    # Create seasonfield from geometry and extract uniqueId
    sfd_public_id = self.__master_data_management_service.extract_season_field_id(geometry)
    sf_unique_id = self.__master_data_management_service.get_season_field_unique_id(sfd_public_id)

    task_id = self.__analytics_processor_service.launch_zarc_processor(
        start_date_emergence=start_date_emergence,
        end_date_emergence=end_date_emergence,
        crop=crop.value,
        cycle=cycle.value,
        soil_type=soil_type.value,
        municipio=municipio_id,
        nb_days_sowing_emergence=nb_days_sowing_emergence,
        seasonfield_id=sf_unique_id
    )

    # check the task status to continue or not the process
    self.__analytics_processor_service.wait_and_check_task_status(task_id)

    # Analytics Schema
    schema = "ZARC"

    # if task successfully completed, get metrics from analytics fabric
    return self.__analytics_fabric_service.get_lastest_metrics(sf_unique_id, schema)

push_metrics(polygon, schema_id, values)

Push metrics in Analytics Fabrics

Parameters:
  • polygon

    A string representing the polygon.

  • schema_id

    The schema on which to save

  • values

    Dict representing values to push

Returns:
  • A response object.

Source code in geosyspy/geosys.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_metrics(self, polygon: str,
                 schema_id: str,
                 values: dict):
    """Push metrics in Analytics Fabrics

    Args:
        polygon : A string representing the polygon.
        schema_id : The schema on which to save
        values : Dict representing values to push

    Returns:
        A response object.
    """
    season_field_id: str = self.__master_data_management_service.extract_season_field_id(polygon)

    return self.__analytics_fabric_service.push_metrics(season_field_id, schema_id, values)

handler: python selection: filters: - "!^[^]" - "!init(.*)"