AWS ECS Deployment guide
The following sections will guide you through the steps to setup a GitAction workflow to deploy the Analytics Datacube processor on AWS ECS.
Before starting the deployment configuration, please make sure to check the prerequisite section.
Infrastructure setup is detailed on the provisioning section.
Clone repository
Please clone the Analytics Datacube Processor on your Github account.
Detailed process is available here.
Ressources creation
Please refer to here to create the ressources needed and use the option 2: ECS.
Github repo configuration
Before configuring the deployment workflow, set the deployment variables in the GitHub repository secrets for actions. The workflow requires these variables in order to successfully push the image.
Secret | Description |
---|---|
AWS_REGION | This is the AWS region you are targeting for deployment |
CONTAINER_NAME | Name of the container |
ECR_REPOSITORY | Container registry to publish your image |
ECS_CLUSTER | ECS Cluster for container deployment |
ECS_SERVICE | ECS Service for container deployment |
ECS_TASK_DEFINITION | ECS Task definition for container deployment |
EDS_API_URL | Base URL to access EarthData Store |
EDS_AUTH_URL | Base authentication URL to access EarthData Store (information regarding this information here |
AWS_ACCESS_KEY_ID | S3 Access key to push datacube assets |
AWS_SECRET_ACCESS_KEY | S3 Secret Access key to push datacube assets |
DEPLOY_LAMBDA | Boolean value to enable Lambda deployment (deployed to ECS if false) |
Deployment workflow
Whithin the Github repository, in the ‘.github/workflows, you will find a file AWS_deploy.yml
Edit the file by adding the branch name you want to deploy.
The file should be as below:
name: Deployment AWS
on:
push:
branches:
- deploy1
env:
AWS_REGION: $
ECR_REPOSITORY: $
ECS_SERVICE: $
ECS_CLUSTER: $
CONTAINER_NAME: $
EDS_API_URL: $
EDS_AUTH_URL: $
LAMBDA_FUNCTION: $
GATEWAY_STAGE: $
AWS_ACCESS_KEY_ID: $
AWS_SECRET_ACCESS_KEY: $
DEPLOY_LAMBDA: $
permissions:
id-token: write # This is required for requesting the JWT
contents: read
jobs:
deploy:
name: Deploy
runs-on: ubuntu-latest
environment: production
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Check if secret gateway stage exists and assign to variable
id: gateway-key
run: |
if [[ -n "$" ]]; then
echo "::set-output name=key_gateway_stage::$"
else
echo "::set-output name=key_gateway_stage::\"\""
fi
shell: bash
- name: configure aws credentials
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::489065051964:role/GitHubActionProcessor-AssumeRoleWithAction #change to reflect your IAM role’s ARN
role-session-name: GitHub_to_AWS_via_gitaction_devOps
aws-region: $
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v2
- name: Build, tag, and push image Lambda to Amazon ECR
id: build-image-lambda
if: $
env:
ECR_REGISTRY: $
IMAGE_TAG: $
run: |
# Build a docker container and
# push it to ECR so that it can
# be deployed to ECS.
docker build \
--build-arg EDS_API_URL=$ \
--build-arg EDS_AUTH_URL=$ \
--build-arg AWS_ACCESS_KEY_ID=$ \
--build-arg AWS_SECRET_ACCESS_KEY=$ \
--build-arg INPUT_JSON_PATH="data/processor_input_example.json" \
--build-arg GATEWAY_STAGE=$ \
-t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG . -f Dockerfile_lambda
# docker tag $ECR_REPOSITORY:latest $ECR_REGISTRY/$ECR_REPOSITORY:latest
docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
echo "image=$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG" >> $GITHUB_OUTPUT
- name: Update image to lambda funtion
id: lambda-function
if: $
env:
ECR_REGISTRY: $
IMAGE_TAG: $
run: |
aws lambda update-function-code \
--function-name $LAMBDA_FUNCTION \
--image-uri $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
- name: Build, tag, and push image Task to Amazon ECR
id: build-image
if: $
env:
ECR_REGISTRY: $
IMAGE_TAG: $
run: |
# Build a docker container and
# push it to ECR so that it can
# be deployed to ECS.
docker build \
--build-arg EDS_API_URL=$ \
--build-arg EDS_AUTH_URL=$ \
--build-arg AWS_ACCESS_KEY_ID=$ \
--build-arg AWS_SECRET_ACCESS_KEY=$ \
--build-arg INPUT_JSON_PATH="data/processor_input_example.json" \
--build-arg GATEWAY_STAGE=$ \
-t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG . -f Dockerfile_ECS
# docker tag $ECR_REPOSITORY:latest $ECR_REGISTRY/$ECR_REPOSITORY:latest
docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
echo "image=$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG" >> $GITHUB_OUTPUT
echo "::set-output name=IMAGE_URI::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG"
- name: Download task definition
if: $
run: |
aws ecs describe-task-definition --task-definition fastapiprocessor --query taskDefinition > task-definition.json
echo $(cat task-definition.json | jq 'del(
.taskDefinitionArn,
.requiresAttributes,
.compatibilities,
.revision,
.status,
.registeredAt,
.registeredBy
)') > task-definition.json
cat task-definition.json
- name: Fill in the new image ID in the Amazon ECS task definition
id: task-def
if: $
uses: aws-actions/amazon-ecs-render-task-definition@v1
with:
task-definition: task-definition.json
container-name: $
image: $
- name: updating task-definition file
if: $
run: cat $
- name: Deploy Amazon ECS task definition
if: $
uses: aws-actions/amazon-ecs-deploy-task-definition@v1
with:
task-definition: $
service: $
cluster: $
wait-for-service-stability: true1
In this deployment workflow, the workflow will be triggered on each commit of the selected branch. To enable the workflow to be triggered manually, you need to configure the workflow_dispatch
event.
At the beginning of the deployment yaml file, please replace
on:
push:
branches:
- deploy1
by
on: workflow_dispatch
You can manually trigger a workflow run using the GitHub API, GitHub CLI, or GitHub browser interface.
Deployment workflow execution
On every commit change, workflow is triggered and executed. Go to the actions sections of the repository and you should see the execution steps and status.
.
More resources
Here is additional content related deployment: