Note
Go to the end to download the full example code.
Field evolution and zonal stats
Using Agriculture cloud mask from EarthDaily, and data from L2A, zonal stats for evolution
Import librairies
import geopandas as gpd
from matplotlib import pyplot as plt
from earthdaily import datasets, EarthDataStore
Load plot
# load geojson
pivot = datasets.load_pivot()
Init earthdatastore with environment variables or default credentials
eds = EarthDataStore()
Search for collection items for June 2022. where at least 50% of the field is clear according to the native cloudmask.
pivot_cube = eds.datacube(
"sentinel-2-l2a",
intersects=pivot,
datetime=["2022-06"],
assets=["red", "green", "blue", "nir"],
mask_with="native",
clear_cover=50,
)
pivot_cube.clear_percent.plot.scatter(x="time")
<matplotlib.collections.PathCollection object at 0x7f71f8701450>
Add spectral indices using spyndex from earthdaily accessor
pivot_cube = pivot_cube.ed.add_indices(['NDVI'])
Plots cube with SCL with at least 50% of clear data
pivot_cube = pivot_cube.load()
pivot_cube.ed.plot_rgb(col_wrap=4, vmin=0, vmax=.3)
plt.title("Pivot evolution masked with native cloudmasks")
plt.show()
Compute zonal stats for the pivot
zonal_stats = pivot_cube.ed.zonal_stats(pivot, ['mean','max','min'])
zonal_stats.isel(feature=0).to_array(dim="band").plot.line(
x="time", col="band", hue="zonal_statistics", col_wrap=3
)
plt.show()
Total running time of the script: (0 minutes 23.241 seconds)