# -*- coding: utf-8 -*-
"""
Created on Fri Oct 13 09:32:31 2023
@author: nkk
"""
from rasterio import features
import numpy as np
import xarray as xr
import tqdm
import logging
import time
from .preprocessing import rasterize
from scipy.sparse import csr_matrix
from scipy.stats import mode
def _compute_M(data):
cols = np.arange(data.size)
return csr_matrix((cols, (data.ravel(), cols)), shape=(data.max() + 1, data.size))
def _indices_sparse(data):
M = _compute_M(data)
return [np.unravel_index(row.data, data.shape) for row in M]
def datacube_time_stats(datacube, operations):
datacube = datacube.groupby("time")
stats = []
for operation in operations:
stat = getattr(datacube, operation)(...)
stats.append(stat.expand_dims(dim={"stats": [operation]}))
stats = xr.concat(stats, dim="stats")
return stats
def _rasterize(gdf, dataset, all_touched=False):
feats = rasterize(gdf, dataset, all_touched=all_touched)
yx_pos = _indices_sparse(feats)
return feats, yx_pos
def _memory_time_chunks(dataset, memory=None):
import psutil
if memory is None:
memory = psutil.virtual_memory().available / 1e6
logging.debug(f"Hoping to use a maximum memory {memory}Mo.")
nbytes_per_date = int(dataset.nbytes / 1e6) / dataset.time.size * 3
max_time_chunks = int(np.arange(0, memory, nbytes_per_date + 0.1).size)
time_chunks = int(
dataset.time.size / np.arange(0, dataset.time.size, max_time_chunks).size
)
logging.debug(
f"Mo per date : {nbytes_per_date:0.2f}, total : {(nbytes_per_date*dataset.time.size):0.2f}."
)
logging.debug(f"Time chunks : {time_chunks} (on {dataset.time.size} time).")
return time_chunks
def _zonal_stats_numpy(
dataset: xr.Dataset, positions, reducers: list = ["mean"], all_touched=False
):
def _zonal_stats_ufunc(dataset, positions, reducers):
zs = []
for idx in range(len(positions)):
field_stats = []
for reducer in reducers:
field_arr = dataset[(...,) + tuple(positions[idx])]
if reducer == "mode":
field_arr = mode(field_arr, axis=-1, nan_policy="omit").mode
else:
func = f"nan{reducer}" if hasattr(np, f"nan{reducer}") else reducer
field_arr = getattr(np, func)(field_arr, axis=-1)
field_stats.append(field_arr)
field_stats = np.asarray(field_stats)
zs.append(field_stats)
zs = np.asarray(zs)
zs = zs.swapaxes(-1, 0).swapaxes(-1, -2)
return zs
dask_ufunc = "parallelized"
zs = xr.apply_ufunc(
_zonal_stats_ufunc,
dataset,
vectorize=False,
dask=dask_ufunc,
input_core_dims=[["y", "x"]],
output_core_dims=[["feature", "zonal_statistics"]],
exclude_dims=set(["x", "y"]),
output_dtypes=[float],
kwargs=dict(reducers=reducers, positions=positions),
dask_gufunc_kwargs={
"allow_rechunk": True,
"output_sizes": dict(
feature=len(positions), zonal_statistics=len(reducers)
),
},
)
del dataset
return zs
[docs]
def zonal_stats(
dataset: xr.Dataset,
geoms,
method: str = "numpy",
smart_load: bool = False,
memory: int = None,
reducers: list = ["mean"],
all_touched=True,
label=None,
buffer_meters: int | float | None = None,
**kwargs,
):
"""
Xr Zonal stats using np.nan functions.
Parameters
----------
dataset : xr.Dataset
DESCRIPTION.
geoms : TYPE
DESCRIPTION.
method : str
"xvec" or "numpy". The default is "numpy".
smart_load : bool
Will load in memory the maximum of time and loop on it for "numpy"
method. The default is False.
memory : int, optional
Only for the "numpy" method, by default it will take the maximum memory
available. But in some cases it can be too much or too little.
The default is None.
reducers : list, optional
Any np.nan function ("mean" is "np.nanmean"). The default is ['mean'].
Yields
------
zs : TYPE
DESCRIPTION.
"""
def _loop_time_chunks(dataset, method, smart_load, time_chunks):
logging.debug(
f"Batching every {time_chunks} dates ({np.ceil(dataset.time.size/time_chunks).astype(int)} loops)."
)
for time_idx in tqdm.trange(0, dataset.time.size, time_chunks):
isel_time = np.arange(
time_idx, np.min((time_idx + time_chunks, dataset.time.size))
)
ds = dataset.copy().isel(time=isel_time)
if smart_load:
t0 = time.time()
ds = ds.load()
logging.debug(
f"Subdataset of {ds.time.size} dates loaded in memory in {(time.time()-t0):0.2f}s."
)
t0 = time.time()
# for method in tqdm.tqdm(["np"]):
zs = _zonal_stats_numpy(ds, positions, reducers)
zs = zs.load()
del ds
logging.debug(f"Zonal stats computed in {(time.time()-t0):0.2f}s.")
yield zs
t_start = time.time()
dataset = dataset.rio.clip_box(*geoms.to_crs(dataset.rio.crs).total_bounds)
if isinstance(buffer_meters, float | int):
input_crs = geoms.crs
geoms = geoms.to_crs({"proj": "cea"})
geoms["geometry_original"] = geoms.geometry
geoms.geometry = geoms.buffer(buffer_meters)
geoms.to_crs(input_crs)
if method == "numpy":
feats, yx_pos = _rasterize(geoms.copy(), dataset, all_touched=all_touched)
positions = [np.asarray(yx_pos[i + 1]) for i in np.arange(geoms.shape[0])]
positions = [position for position in positions if position.size > 0]
del yx_pos
if "time" in dataset.dims and smart_load:
time_chunks = _memory_time_chunks(dataset, memory)
zs = xr.concat(
[
z
for z in _loop_time_chunks(dataset, method, smart_load, time_chunks)
],
dim="time",
)
else:
zs = _zonal_stats_numpy(dataset, positions, reducers, **kwargs)
zs = zs.assign_coords(zonal_statistics=reducers)
zs = zs.rio.write_crs("EPSG:4326")
# keep only geom that have been found in the raster
f = np.unique(feats)
f = f[f > 0]
index = geoms.index[f - 1]
index = xr.DataArray(
index, dims=["feature"], coords={"feature": zs.feature.values}
)
# create the WKT geom
if isinstance(buffer_meters, float | int):
geoms.geometry = geoms["geometry_original"]
if geoms.crs.to_epsg() != 4326:
geoms = geoms.to_crs("EPSG:4326")
geometry = xr.DataArray(
geoms.geometry.iloc[list(f - 1)].to_wkt(rounding_precision=-1).values,
dims=["feature"],
coords={"feature": zs.feature.values},
)
new_coords_kwargs = {"index": index, "geometry": geometry}
# add the label if a column is specified
if label:
label = xr.DataArray(
list(geoms[label].iloc[f - 1]),
dims=["feature"],
coords={"feature": zs.feature.values},
)
new_coords_kwargs["label"] = label
zs = zs.assign_coords(**new_coords_kwargs)
zs = zs.set_index(feature=list(new_coords_kwargs.keys()))
if method == "xvec":
import xvec
zs = dataset.xvec.zonal_stats(
geoms.to_crs(dataset.rio.crs).geometry,
y_coords="y",
x_coords="x",
stats=reducers,
method="rasterize",
all_touched=all_touched,
**kwargs,
)
logging.info(f"Zonal stats method {method} tooks {time.time()-t_start}s.")
del dataset
return zs