EarthDaily Simulated Dataset

Following a pivot field

Import librairies

import datetime
import earthdaily
from dask.diagnostics import ProgressBar
from matplotlib import pyplot as plt
from earthdaily import datasets, EarthDataStore

ProgressBar().register()  # to have chunks progress bar

Loading pivot

pivot = datasets.load_pivot_corumba()

Init earthdatastore with environment variables or default credentials

eds = EarthDataStore()

Define timerange

delta_days = 10
datetime_list = ["2018-10-01", "2019-04-15"]

Request items for vnir dataset

items = eds.search(
    "earthdaily-simulated-cloudless-l2a-cog-edagro",
    intersects=pivot,
    datetime=datetime_list,
    query={"instruments": {"contains": "vnir"}},
    prefer_alternate="download",
)[::delta_days]  # an keep on item every n delta_days

Generate datacube for RGB and NIR

datacube = earthdaily.earthdatastore.datacube(
    items, intersects=pivot, assets=["blue", "green", "red", "nir"]
).load()
[                                        ] | 0% Completed | 142.83 us
[                                        ] | 0% Completed | 100.36 ms
[                                        ] | 0% Completed | 200.57 ms
[                                        ] | 0% Completed | 300.75 ms
[                                        ] | 0% Completed | 400.91 ms
[                                        ] | 0% Completed | 501.10 ms
[                                        ] | 1% Completed | 601.28 ms
[                                        ] | 1% Completed | 701.45 ms
[#                                       ] | 3% Completed | 801.62 ms
[##                                      ] | 5% Completed | 901.80 ms
[##                                      ] | 5% Completed | 1.00 s
[##                                      ] | 5% Completed | 1.10 s
[##                                      ] | 5% Completed | 1.20 s
[##                                      ] | 6% Completed | 1.30 s
[###                                     ] | 8% Completed | 1.40 s
[####                                    ] | 10% Completed | 1.50 s
[####                                    ] | 10% Completed | 1.60 s
[####                                    ] | 10% Completed | 1.70 s
[####                                    ] | 10% Completed | 1.80 s
[####                                    ] | 10% Completed | 1.90 s
[####                                    ] | 11% Completed | 2.00 s
[#####                                   ] | 13% Completed | 2.10 s
[######                                  ] | 15% Completed | 2.20 s
[######                                  ] | 15% Completed | 2.30 s
[######                                  ] | 15% Completed | 2.41 s
[######                                  ] | 15% Completed | 2.51 s
[######                                  ] | 16% Completed | 2.61 s
[#######                                 ] | 18% Completed | 2.71 s
[########                                ] | 20% Completed | 2.81 s
[########                                ] | 20% Completed | 2.91 s
[########                                ] | 20% Completed | 3.01 s
[########                                ] | 20% Completed | 3.11 s
[########                                ] | 20% Completed | 3.21 s
[#########                               ] | 23% Completed | 3.31 s
[##########                              ] | 25% Completed | 3.41 s
[##########                              ] | 25% Completed | 3.51 s
[##########                              ] | 25% Completed | 3.61 s
[##########                              ] | 25% Completed | 3.71 s
[##########                              ] | 25% Completed | 3.81 s
[###########                             ] | 27% Completed | 3.91 s
[############                            ] | 30% Completed | 4.01 s
[############                            ] | 30% Completed | 4.11 s
[############                            ] | 30% Completed | 4.21 s
[############                            ] | 30% Completed | 4.31 s
[############                            ] | 30% Completed | 4.41 s
[############                            ] | 31% Completed | 4.51 s
[#############                           ] | 33% Completed | 4.61 s
[##############                          ] | 35% Completed | 4.71 s
[##############                          ] | 35% Completed | 4.81 s
[##############                          ] | 35% Completed | 4.91 s
[##############                          ] | 36% Completed | 5.01 s
[##############                          ] | 36% Completed | 5.11 s
[###############                         ] | 37% Completed | 5.21 s
[###############                         ] | 38% Completed | 5.31 s
[###############                         ] | 38% Completed | 5.41 s
[################                        ] | 40% Completed | 5.51 s
[################                        ] | 40% Completed | 5.61 s
[################                        ] | 41% Completed | 5.71 s
[#################                       ] | 42% Completed | 5.81 s
[#################                       ] | 43% Completed | 5.91 s
[#################                       ] | 43% Completed | 6.01 s
[##################                      ] | 45% Completed | 6.11 s
[##################                      ] | 45% Completed | 6.21 s
[##################                      ] | 46% Completed | 6.31 s
[###################                     ] | 47% Completed | 6.41 s
[###################                     ] | 48% Completed | 6.51 s
[###################                     ] | 48% Completed | 6.61 s
[###################                     ] | 49% Completed | 6.71 s
[####################                    ] | 50% Completed | 6.81 s
[####################                    ] | 51% Completed | 6.91 s
[####################                    ] | 51% Completed | 7.01 s
[#####################                   ] | 53% Completed | 7.11 s
[#####################                   ] | 53% Completed | 7.21 s
[#####################                   ] | 53% Completed | 7.31 s
[#####################                   ] | 53% Completed | 7.41 s
[######################                  ] | 55% Completed | 7.51 s
[######################                  ] | 56% Completed | 7.61 s
[#######################                 ] | 57% Completed | 7.71 s
[#######################                 ] | 58% Completed | 7.82 s
[#######################                 ] | 58% Completed | 7.92 s
[#######################                 ] | 58% Completed | 8.02 s
[########################                ] | 61% Completed | 8.12 s
[#########################               ] | 62% Completed | 8.22 s
[#########################               ] | 62% Completed | 8.32 s
[#########################               ] | 62% Completed | 8.42 s
[#########################               ] | 63% Completed | 8.52 s
[#########################               ] | 63% Completed | 8.62 s
[##########################              ] | 66% Completed | 8.72 s
[##########################              ] | 66% Completed | 8.82 s
[##########################              ] | 66% Completed | 8.92 s
[##########################              ] | 66% Completed | 9.02 s
[###########################             ] | 67% Completed | 9.12 s
[###########################             ] | 67% Completed | 9.22 s
[###########################             ] | 67% Completed | 9.32 s
[############################            ] | 71% Completed | 9.42 s
[############################            ] | 71% Completed | 9.52 s
[############################            ] | 71% Completed | 9.62 s
[#############################           ] | 72% Completed | 9.72 s
[#############################           ] | 72% Completed | 9.82 s
[#############################           ] | 73% Completed | 9.92 s
[##############################          ] | 75% Completed | 10.02 s
[##############################          ] | 76% Completed | 10.12 s
[##############################          ] | 76% Completed | 10.22 s
[##############################          ] | 76% Completed | 10.32 s
[###############################         ] | 77% Completed | 10.42 s
[###############################         ] | 77% Completed | 10.52 s
[################################        ] | 80% Completed | 10.62 s
[################################        ] | 81% Completed | 10.72 s
[################################        ] | 81% Completed | 10.82 s
[################################        ] | 81% Completed | 10.92 s
[#################################       ] | 82% Completed | 11.02 s
[#################################       ] | 82% Completed | 11.12 s
[#################################       ] | 82% Completed | 11.22 s
[##################################      ] | 85% Completed | 11.32 s
[##################################      ] | 86% Completed | 11.42 s
[###################################     ] | 87% Completed | 11.52 s
[###################################     ] | 87% Completed | 11.62 s
[###################################     ] | 87% Completed | 11.72 s
[###################################     ] | 88% Completed | 11.82 s
[####################################    ] | 90% Completed | 11.92 s
[####################################    ] | 90% Completed | 12.02 s
[####################################    ] | 90% Completed | 12.12 s
[#####################################   ] | 92% Completed | 12.22 s
[#####################################   ] | 92% Completed | 12.32 s
[#####################################   ] | 93% Completed | 12.42 s
[######################################  ] | 95% Completed | 12.52 s
[######################################  ] | 95% Completed | 12.62 s
[######################################  ] | 96% Completed | 12.72 s
[######################################  ] | 96% Completed | 12.82 s
[####################################### ] | 97% Completed | 12.92 s
[####################################### ] | 98% Completed | 13.03 s
[####################################### ] | 98% Completed | 13.13 s
[########################################] | 100% Completed | 13.23 s

Plot RGB image time series

datacube[["red", "green", "blue"]].ed.plot_rgb(
    col="time", col_wrap=4, vmax=0.2
)
time = 2018-10-01T10:42:14, time = 2018-10-11T10:42:14, time = 2018-10-21T10:42:14, time = 2018-10-31T10:42:14, time = 2018-11-10T10:42:14, time = 2018-11-20T10:42:14, time = 2018-11-30T10:42:14, time = 2018-12-10T10:42:14, time = 2018-12-20T10:42:14, time = 2018-12-30T10:42:14, time = 2019-01-09T10:42:14, time = 2019-01-19T10:42:14, time = 2019-01-29T10:42:14, time = 2019-02-08T10:42:14, time = 2019-02-18T10:42:14, time = 2019-02-28T10:42:14, time = 2019-03-10T10:42:14, time = 2019-03-20T10:42:14, time = 2019-03-30T10:42:14, time = 2019-04-09T10:42:14
<xarray.plot.facetgrid.FacetGrid object at 0x7fc53867b2d0>

Plot mean RGB time series

datacube[["blue", "green", "red", "nir"]].groupby("time").mean(...).to_array(
    dim="band"
).plot(col="band")
band = blue, band = green, band = red, band = nir
<xarray.plot.facetgrid.FacetGrid object at 0x7fc530b2b190>

Plot NDVI evolution

datacube["ndvi"] = (datacube["nir"] - datacube["red"]) / (
    datacube["nir"] + datacube["red"]
)

fig, ax = plt.subplots()
mean_ndvi = datacube[["ndvi"]].groupby("time").mean(...).to_array(dim="band")
std_ndvi = datacube[["ndvi"]].groupby("time").std(...).to_array(dim="band")
ax.fill_between(
    mean_ndvi.time,
    (mean_ndvi.values + std_ndvi.values)[0, ...],
    (mean_ndvi.values - std_ndvi.values)[0, ...],
    alpha=0.3,
    color="C1",
)
mean_ndvi.plot(ax=ax, c="C1")
plt.grid(alpha=0.4)
plt.title("NDVI evolution every 10 days")
NDVI evolution every 10 days
Text(0.5, 1.0, 'NDVI evolution every 10 days')

Total running time of the script: (0 minutes 25.270 seconds)

Gallery generated by Sphinx-Gallery